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Separation in a gas centrifuge at high feed flow rate 

By ZHANG CUNZHENT AND A. T. CONLISK 
Department of Mechanical Engineering, The Ohio State University, Columbus, OH 43210, USA 

(Received 28 November 1988 and in revised form 11 April 1989) 

The separation of a binary gas mixture for high feed flow rates such that the Ei 
vertical shear layer is nonlinear is considered. Numerical solutions for the velocity 
field and the temperature within the centrifuge are computed using the method 
originally described by Bennetts & Hocking (1973). These solutions are inputs to the 
separation proElem which is characterized by a concentration boundary layer also of 
width of O(Et).  Results are presented for a wide range of parameters and the effect 
of thermal drive strength is examined in detail. Surprisingly the numerical results 
indicate that the analytical solution for the separation factor given by Conlisk, 
Foster & Walker (1983) may be used far outside its strict asymptotic region of 
validity. 

1. Introduction 
It has been known for many years that gas centrifugation may be employed to 

separate two-component mixtures. In this problem a two-component gas is fed into 
a rapidly rotating container and, because of the high rotation speed, the heavier 
component will be forced to the outer wall and the gas will be enriched in the lighter 
component near the inner wall (figure 1). In recent years a relatively extensive 
literature has emerged and, in general, three approaches have been taken to solve the 
problem. First, both the fluid mechanics and mass transfer have been solved 
numerically (see for example Kai 1975, 1977) ; second, the flow field has also been 
solved by eigenfunction expansion using the so-called ‘pancake equation ’ with the 
mass transfer problem being solved numerically (Wood & Sanders 1983); and finally, 
asymptotic analysis has been employed for both the flow and the mass transfer 
problems leading to closed-form solutions for the velocity field (Conlisk, Foster & 
Walker 1983; Conlisk 1983; Conlisk 1986b) and in a certain parameter range for the 
mass transfer problem as well. It is this third approach that will be taken in the 
present work. It should be noted that the problem to be discussed here has a history 
dating back to World War I1 and a great body of material had been published prior 
to the work by Kai (1975). However, much of this early work suffered from the need 
to make unrealistic assumptions concerning the flow field within the centrifuge. 
Often the effect of the side- or endwalls was neglected and solutions were produced 
for vanishingly small feed flow rates. Moreover, radially averaged solutions for the 
mass fraction of lighter species were often produced which tended to obscure the 
process of the radial and vertical separation of the mixture taking place (see the 
reviews by Olander 1981 ; Soubbaramayer 1979 and Conlisk 1986b for discussion of 
the early work). It has been the goal of this relatively. recent work (here defined as 
that work subsequent to about 1975) to improve understanding of the flow field in 

t Permanent address : Department of Engineering Physics, Tsinghua University, Beijing, PRC. 
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a gas centrifuge and to use the results to obtain better predictions of the separation 
capacity of a given machine as a function of the operating parameters. 

The flow field within a gas centrifuge is complicated and it is perhaps instructive 
to review the general characteristics of the flow. 

The centrifuge considered here is of the Zippe or Groth (Olander 1981 ; Conlisk 
1986b) type and is shown in cross-section in figure 1 ;  the arrows denote the 
qualitative direction of the flow patterns and it is useful to review the structure of 
the basic source-sink flow patterns. Referring then to figure 1 (a),  the gas enters the 
container at  the feed port (F) through a small slot of width O(Ei) (here E is the 
Ekman number; E = u/(B;f2) % 1 where i2 is the rotation rate, u the kinematic 
viscosity, and B, the dimensional outer radius) into a vertical Stewartson Layer of 
width O(E4) ; the purpose of this layer is to pass fluid from the feed to the product port 
(P) at z* = L. Since & % & for E % 1, the product and feed ports are small on the 
scale of the Ei layer and appear as point singularities of the &-layer equations 
(Conlisk et al. 1983; Conlisk & Walker 1982). Next, the fluid that does not pass out 
the product port enters a thicker Stewartson layer of width O(Ef) ; the purpose of the 
El layer is to adjust the swirl velocity v to relative rest on the sidewall(s) and the 
vertical velocity is antisymmetric with respect to z = L/2Bl (figure 1). The fluid then 
passes through the Ekman layers to the outer wall and out of the container (W). For 
the source-sink component of the motion the only velocity component in the core is 
an azimuthal swirl. The fraction of fluid that passes out the product port is the cut 
and is a major parameter in assessing the separation characteristics of the gas 
centrifuge. Since the Ekman number E x 10-7-10-9 for the centrifuge applications, 
these boundary layers are extremely thin and in general, comprise less than 5% of 
the total container volume. 

The flow patterns depicted in figure 1 are due to at least three effects ; these are (i) 
an applied temperature gradient, usually vertical (a thermally driven centrifuge) ; (ii) 
differential rotation of the side- or endwalls which is a model for the scoop drive in 
a mechanically driven centrifuge. Figure 1 (b)  depicts the flow patterns for a thermal 
or scoop drive which is usually modelled by a differentially rotated end cap. These 
flow patterns are qualitatively similar to those for source-sink motion and for a 
parameter p = h,(Al-A,)-~hT < 0 oppose the source-sink motion on r = a. 
Furthermore, locations of thermal or rotational discontinuities act as sources or sinks 
of fluid as described in Conlisk et al. (1983). Theoretically, each- of the corners may 
exhibit a singularity and, for simplicity, only the case where singularities occur in the 
top corners is depicted in figure 1 ( b ) .  The leading-order (constant) core temperature 
is c. (iii) Finally, an imposed source-sink motion is present in all centrifuges. Note 
that for a purely source-sink flow, there is no net motion within the core; moreover, 
the primary effect of the scoops and/or the small vertical temperature gradient AT 
is to induce a vertical drift within the core region in addition to a swirl component. 
The presence of this core drift alters the flow patterns in the sidewall boundary layers 
and, if properly designed, enhances separation significantly (Conlisk 1986 b) .  

The purpose of the present paper is to extend the asymptotic results of Conlisk 
et al. (1983) to higher flow rates. This necessitates the consideration of the nonlinear 
&-layer problem and is a significant complication in the mass transfer work. 

The plan of this paper is as follows. In $2 the governing equations are presented, 
and in $3 the nonlinear El layer is considered. In $4 the results of $3 are employed 
to solve the mass transfer problem. The implications for future work and the 
conclusions are presented in $5. 
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FIGURE 1. Schematic of the Zippe or Groth machine in cross-section; the boundary layers are 
greatly expanded in scale. (a )  Qualitative source-sink flow patterns. ( b )  Qualitative flow patterns 
for a positive AT = T: -T,* or scoop drive modelled by A, < 0 (q c 0). A special case where 
A. = 0 is shown for simplicity. The boundary-layer substructure near the corners of the centrifuge 
is not shown. See Conlisk el al. (1983) for details. This is essentially figure 1 of Conlisk (19866). 
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2. Governing equations 
The basic centrifuge configuration is depicted in figure 1 and consists of an annular 

region bounded by horizontal end plates at z* = 0 and z* = L. As in Conlisk et al. 
(1983) we write the velocity and temperature fields as perturbations from the basic 
state of solid-body rotation ; non-dimensionalizing all lengths on the outer radius B, 
and velocities on a suitably defined injection velocity U,. The governing equations 
are 

where 

and p$ is the density at the outer sidewall, 52 the rotation rate, p the viscosity, R the 
gas constant, T$ the leading-order (constant) temperature in the rotor; U, is the 
injection velocity which is defined as 

where riz, is the feed dimensional flow rate. The dimensionless perturbation 
quantities p ,  p and T are defined by 

p* = pZ(1 +sfp) ,  p* = pZ(1 +e,p) ,  T* = T* o(1+s,T), (8) 

where an asterisk denotes a dimensional quantity. Also in (1)-(5) 

h=-PrM2, Y-1 V - 
4Y 

where y is the ratio of specific heats. 
As is usual in the present problem, a perfect gas is assumed, which leads to 

Pe(r) = ~ X P  ( ‘M2(r2-1))  (9) 

and p = p + T .  (10) 

The governing equation for the separation of a binary mixture in a rapidly rotating 
flow may be derived using standard arguments (Conlisk et al. 1983; Bird, Stewart & 
Lightfoot 1960) for the case of steady flow and no chemical reactions within the 
centrifuge ; this equation in dimensionless form is given by 

pe(r)  E-:(Q-v)w,-J&H(w,) = J V ~ W A ,  (11) 
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for a = AJB,  < r < 1 and 0 < z < LIB, = Z, ,  where 

In (11) wA is the mass fraction of the lighter component of the binary mixture and 
Q = (u,  v ,  w) is the dimensionless velocity vector in cylindrical components as 
depicted on figure 1 ; in (1 1) the dimensionless parameters 6 and E are defined by 

Ei 
, 6=- MB - - M A  

MA SCEf ’ 
€ =  

and in (13) MB and MA are the molecular weights of the heavy and light species 
respectively, and Sc is the Schmidt number and is defined by 

sc = y/p*DAB, (14) 

where DAB is the diffusion coefficient. 
The boundary conditions associated with (1)-(5) are for the velocity field u = v = 

w = 0 on all solid walls, except at  points of injection and withdrawal of gas. For the 
temperature field, there are a number of possibilities. We consider the case where the 
side- and endwalls are held at  constant but differing temperatures. Defining a 
thermal Rossby number by 

T;’ - T,* 
ET = - 

T = O  at z = O ,  T = A T  at z=Z0, 
T = A , A ,  at r = a ,  T = A , A T  at r =  1, 

To* 
we assume that 

where 

and T,*, T: and T,* are the temperatures a t  r = a,  z = 2, and z = 0, respectively, and 
all are constant. The definition of A, is analogous. 

The case of differential rotation is analogous and may be considered in a similar 
way; in this paper, however, we consider only the case of thermally driven flow. 

A major limitation of the mass transfer work presented in Conlisk et al. (1983) is 
that the boundary conditions associated with (1  1) are valid only for 8 9 Ei. However, 
flow rates of practical interest are nominally within the regime S 2 Ei and so it is 
important that the mass transfer problem be considered for 6 = O(Ef). The 
complicating feature of this parameter range is that, for Sc = O( l ) ,  ef = O(Ei) (from 
(13)) and it is in this regime that the & layer becomes nonlinear. Before reconsidering 
the sidewall boundary condition for (1 1) in $ 3  the nonlinear compressible Ei layer is 
analysed. 

3. The compressible nonlinear E: layer 
3.1. Governing equations 

It is well known that as the Rossby number ef increases, the nonlinear terms in (2)-(4) 
first become important in the Ei layer (Bennetts & Hocking 1973); furthermore, the 
Ei x Ef-layer section underneath the Ei layer (Conlisk et al. 1983) becomes nonlinear 
at  the same time so that the linear Ekman condition cannot be used as was done in 
Barcilon (1970). Consequently, the problem is significantly more complicated than in 
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the linear case. It should be noted that the solution in all the other regions of the flow 
remain the same as in Conlisk et al. (1983). In  what follows let et = hEa. 

In  the Ea layer on r = a let 5 = ( r - a )  E-f and expand the velocities, temperature 
and pressure as 

9 1  (16) 
u = Eiu0 + . . . , v = V,(a) + V, + . . . , w = E~w, + . . . 

T = h,h,+Ta+ ..., p = EiWpo+ ..., 1 
where V,(a) is the swirl velocity in the geostrophic core (see below, (32)) .  then to 
leading order, (1)-(5) become 

It should be noted here that the Mach number is assumed to be O(1). Equations 
(18)-(21) are extremely complicated because of the coupling of the temperature field 
and the velocity field. 

3.2. The nonlinear Ekman condition 
As mentioned previously, the Ei x Ei corner region underneath the Ei layer becomes 
nonlinear a t  the same time as the Ei layer and it seems necessary to calculate a full 
numerical solution in that region. As Bennetts & Hocking (1973) point out, however, 
in such an approach, the dependence of the solution on the individual parameters 
would not be easy to deduce, thereby making it difficult to incorporate the result into 
a single boundary condition on the Ei-layer solution. In  the interest of preserving the 
structure of the nonlinear Ei layer, Bennetts & Hocking (1973) derived a nonlinear 
Ekman condition based on the assumption that the Ekman layer underneath the Ei 
layer has a local similarity form. While it is difficult to assess quantitatively the 
validity of such a procedure, comparison of their results with the experimental 
results of Hide (1968) reveals general agreement in the thickness of the source and 
sink layers; moreover, for the Rossby numbers of interest here, the agreement 
between the experimental results of Hide (1968) and the numerical results of 
Bennetts & Hocking (1973) is quantitatively good and because of this, the Bennetts 
& Hocking approach has been adopted here. In  the present case of compressible flow, 
we find that equations (3.2) and (3.3) of Bennetts & Hocking re-emerge with the 
definitions (in their notation) 

where 5' = ( 2 / A )  (, and { = zE-i, provided ha2 4 1 and Pr x 1. For the case of UF, 
a t  T,* = 3 2 0 K ,  the Prandtl number Pr = 0.95 and for typical values of the 
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parameters, say, M = 3, h = 0.05; consequently, the Ekman condition that thus 
emerges is (since r f b  = Constant a t  z = o,z,) 

av 0 w0=+c,.+ z = -  
36 2 0  

Bennetts & Hocking's result for the incompressible nonlinear Ekman condition thus 
corresponds to the leading-order term in an asymptotic expansion about h = 0 and 
Pr = 1. Here C, = C,(A, (av/a[ )  is a coefficient that is independent o f f  and 0.3 
< C, Q 0.7; the linear problem corresponds to C, = $. Bennetts & Hocking have 
given the numerical solutions of CE for different A and (avo/af) It-,,. The values of C, 
are in table 1 of their paper (1973). For convenience in the numerical solution we 
have fitted the Bennetts & Hocking data to specific functional forms. These results 
are given by 

C, = 0.3455exp(-0.5050x)+0.1545, - 1  < x < 1 (24) 

and C, = 0.3630exp(-0.3316(x-1)0~6e70), 1 < 5 < 10, (25) 

where 

Note that for x = 0 (i.e. A = 0) C, = 0.5 which corresponds to the linear solution. 
Equations (24) and (25) are then used in the numerical solution as described in the 
next section. 

3.3. Solution of the nonlinear Ei-layer equation 
Because the sidewall temperatures are assumed to be constant, the swirl and radial 
velocities and temperature are independent of the variable z and we write the 

(27 a)  
velocities as 

vo = #(f ) ,  

where (27b, c) are obtained from (17) and (23). Substituting these expressions into 
(19) yields 

(28) 
dQ, 

d t2  d t  
-- d2Q, ~ A C ~  cri(a) pi(.) Q, ---4~, S ( a )  pk(a) 4 = 0, 

subject to 

Note that (28) is independent of temperature and consequently may be solved in 

The equation for the temperature variation within the @ layer may be obtained 
a straightforward manner using finite differences. 

by substituting (16) into (21) and noting from (18) that aT,/az = 0. The result is 

subject to c = O  a t  [ = 0  andas [+a. (31) 
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Dimensional 
parameters 

L 
B, 

QB, 
To 
% 

Value 

0.25 m 
2.50 m 

260 m/s 
320 K 

10-4-iO-6 kg/s 

Dimensionless Value 

a 0.3-0.8 
M 3 
6 0.2-0.9 
q - 10-0 

TABLE 1 .  Range of parameters discussed in the present problem 

parameters 

0 4 8 12 16 
5 

FIQURE 2. Vertical velocity profiles as a function of 6 for q = -3 for several values of A ;  the 
profiles are depicted at z = 2,. 

It is not obvious that --f 0 as 6 + 00 because the geostrophic problem has not been 
considered here; (31) is, however, correct as shown in Appendix A. Note that (30) is 
coupled to the fluid equation (28) and once (28) is solved, then (30) may be solved 
directly. The methods employed to solve these two equations are discussed in 
Appendix B. 

It should be noted here that the form of geostrophic velocity remains the same as 
in Conlisk et al. (1983) and the result is 

q =-LA where 2 T  

for a thermally driven centrifuge (see Conlisk et al. 1983). 

(33) 
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-0.5 I I 4 I 
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FIQURE 4. Temperature perturbation ae a function of E for A = 1.9787 compared with the linear 
result, q = -3. 

3.4. Results 

To observe the effect of the increased flow rate on the velocity profile in the source 
layer on r = a, numerical solutions have been computed for centrifuge parameters 
used in Conlisk (1986b), and detailed in table 1. Figure 2 shows the solutions for 
q = - 3 for several values of A for the vertical velocity as a function of 6 a t  the top of 
the can, z = Z ; .  The values of h are 0.3957, 1.1872 and 1.9787, respectively, 
corresponding to the feed mass flow rates m, = 1 x kg/s, 3 x kg/s, and 
5 x lov4 kg/s. Note that the solution is fairly close to the linear solution for 
A = 0.3957, while the difference for A = 1.1872 and 1.9787 is substantially greater. 

The streamlines for these cases are shown on figure 3. The stream function $ is 
defined in the usual way and is given by 

On figure 3 (a-c) are the solutions for A = 0.3957,1.1872 and 1.9787, respectively, and 
q = -3. Note the significant increase in the width of the @ layer as h increases. 
Figure 4 illustrates the nonlinear effect on the temperature perturbation for 
A = 1.9787. The results presented in this section are for A, = 1 so that the side- 
and top endwall are a t  the same temperature. Other results for different values of 
A,,O < A, < 1 show only a very weak dependence on A, and are not reproduced 
here. 

4. The mass transfer equation 
4.1. Basic concentration-layer structure 

The structure of the mass transfer problem for ei < I8 which has been treated 
previously (Conlisk et al. 1983; Conlisk 1983, 19863) for small S consists of a pair of 
concentration layers of width O(d) on the vertical surfaces with a single layer of 
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FIGURE 5. (a) Sketch of the concentratiqn-layer structure for 6 $+ Ei. ( b )  Sketch of the present 
concentration-layer structure 8 = O(Ea). Only the vertical shear layer structure is shown. 

width O(6) on either the top or bottom wall depending on whether the parameter q 
is greater than or less than zero. These concentration layers surround a core region 
in which mass diffusion is negligible to leading order. This structure obtains provided 
Ei Q 6 6 1,  and a sketch of this situation is given in figure 5 (u),. 

Since 6 = Ei/Sce,, for ep = O(E4) with Sc = O ( l ) ,  then 6 = O(El) and this structure 
is altered; in this case the width of the mass transfer (or concentration) layer is of 
O(6) = O(Ei),  the same width as the outer Stewartson layer as is depicted in figure 

In the present parameter range, the core region of the centrifuge is unaffected by 
the increase in mass flow rate, with (11) reducing to a balance between pressure 
diffusion and convection ; i.e. for 

5 ( b ) .  
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which is the same equation as considered by Conlisk et al. (1983). For W, < 0 (a 
downward core drift) the solution is given by 

where C is a constant to be determined. This core distribution is altered as we 
approach the side- and endwalls and these regions are considered next. 

4.2. The sidewall concentration layer 
In the Ei layer w - O(Ef) and if S = O(Ei) convection and diffusion of mass in (11)  
balance if the width of the concentration layer is the same as that of the fluid layer, 
i.e. of O(Ei). Thus for 6 = PEi,P = 0 ( 1 )  

where ug and wo are defined in (27) and 

w A  = w F  + 6&wF( 1 -UF) 3,. (39) 

Note that radial convection of mass is now as important as vertical convection and 
(38) is thus more difficult to solve than in Conlisk et al. (1983). Since uo and wo are 
both numerical functions, numerical solutions to (38) must be sought. 

Equation (38) is subject to boundary conditions at 6 = 0 and as E +  00. To deduce 
the appropriate boundary conditions at the sidewall, we note that the &-layer 
solution for the mass fraction is unaltered from that of Conlisk et al. (1983) and is 
given by 

E: 
&A$ = +Ta1(7, z),  (40) 

where 7 = ( r  - a )  E-i and 

is, = Bo(z) - pe Ah (7 - t )  w,(t, z )  dt - SeM2aA0( 1 -Ao)  7 ; 1 
note that the expansion above for the total mass fraction in the & layer, wA;, is 
slightly different from that in Conlisk et al. (1983) in that some scale factors have 
been removed for clarity. Writing (41) in the Ei-layer variables (i.e. as 9 -+ co) and 
using the expansion for wA; above we must have 

lim wA = Ao(z) 
5-0 

from Taylor series considerations. In terms of 3, defined in (39), equation (42) is 
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Note that (43) is similar in form to that for 6 B Ei, except that 4 replaces the total 
shear layer flux 4 + F;. 

The solution in the layer on T = b is similar except that a minus sign appears before 
a3Jaz. q ( a )  is the volume flux within the Ei layer and is the same as in Conlisk et al. 
(1983). 

The problem which must be solved is thus given by (38) subject to (43) and the 
matching condition as E +  co which is 

3, = c+2 /p ,  W,(Z-Z,). (44) 

However, C is an unknown constant and is obtained by matching to the corner 
regions. This matching and the numerical solution of this problem are considered 
next. 

4.3. Solution for the sidewall concentration layer 
To solve (38), the value of 3, as .!+ 00 was subtracted out and the solution for the 
resulting perturbation was obtained using a marching technique. The scheme 
proceeds from the top wall down; the standard Crank-Nicholson technique was 
employed in the z-direction. At each z-location, the Thomas algorithm was used to 
solve the set of equations that arises from discretizing the radial derivatives. Because 
of the presence of the convective terms in (38) standard marching procedures will fail 
if the velocity in the marching direction becomes negative. Thus if z* = 2, -2, then 
for z < $2, we write as, i 

- x -(Ggl-$,J, ax* k 

and for z* > $2, 

where i denotes the radial location and j the axial location, and k is the z-grid size. 
Use of this upwind discretization scheme ensured stability of the numerical scheme. 

The constant C is obtained by matching to the corner regions a t  z = 0;  the 
procedure is not altered from that described by Conlisk et al. (1983) because the 
extension of the O(S) layer under the Ei layer on z = 0 is now of O(Ei x Ei) over which 
(it may be shown) the mass fraction is constant. To describe the matching, let 

w: = 3,- C+-(z-Z,)} 2 i P e w ,  
(45) 

In the corner regions at the feed point ( r  = a, z = 0) and waste point ( r  = b,  z = 0) the 
solution 3, must match to the solution of the horizontal mass fraction boundary 
layer, which is given by equation (3.70) of Conlisk et al. (1983) (with suitable changes 
in notation). Taking the appropriate limits of that equation as the radial variable 
approaches the feed and the waste, we obtain 

and 

D + a 2  
C+ = 0 at the feed point, 

ape(a) q(a ,  0) 

D+b2 
- - t,, at the waste point. C +  

bP,(b) F;(b, 0) 
(47) 

The conservation of the light component species gives 
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5, N A t  N z  AZ 0, a, 8U( (kg 
U/Yr) 

10 26 0.40 41 0.25 0.007 1362 1.09066 2.3311 
14.8 38 0.40 41 0.25 0.007 1350 1.08935 2.2538 
20 51 0.40 41 0.25 0.007 1344 1.089 14 2.2207 
30 76 0.40 41 0.25 0.007 1341 1.08903 2.1925 

20 51 0.40 21 0.50 0.007 1340 1.08832 2.1756 
20 51 0.40 41 0.25 0.007 1344 1.089 14 2.2207 
20 51 0.40 81 0.125 0.0071347 1.08928 2.2418 

20 26 0.80 41 0.25 0.007 1342 1.08903 2.2147 
20 51 0.40 41 0.25 0.007 1344 1.089 14 2.2207 
20 101 0.20 41 0.25 0.007 1344 1.089 14 2.2207 

TABLE 2. Numerical results for the indicated parameters as a function of mesh size. N, is the 
number of grid points in the z-direction. 

Here 8'; is the volume flow rate in the Ekman layer and 0 is the cut. From (45)-(48) 
the constant C can be determined by 

where w : ~  is the numerical solution of or a t  the product point. The initial guess for 
C is taken to be zero and successive iteration on the constant C is performed. In  the 
calculations which have been performed, the scheme converged in less than ten 
iterations with a relative error of less than 

For the numerical solution typically 51 points were used in the radial direction 
with 41 points being employed in the axial direction. In  table 2 are presented some 
typical numerical results as a function of grid size. I n  following calculations we let 
E = 20 and grid size A t  = 0.40, k = 0.25. 

In  what follows, the results for both the separation factor and separative power 
will be presented for various values of the parameters. Consistent with much of the 
work in this area we define the total separation factor 

and the separative power 

6U = + h F O ( l  -0) (aw- l)', 

where up and ow are the concentration of product and waste, respectively. 
The results to be presented here are for A, = 1 ; other results produced for different 

values of A, a t  fixed q indicate that the separation factor is a very weak function of 
the sidewall temperature. The results for the separation factor are, however, strong 
functions of q, which indicates a strong dependence on the overall vertical 
t,emperature difference, AT. In  this paper the unit of separative power is kg U/yr in 
contrast to  that of Conlisk (1983, 19863) in which the separative power units are in 
kg UF,/yr. In this regard, for a true comparison with the other work in this area, the 
number 47.25 in table 3 of Conlisk ( 1 9 8 6 ~ )  and table 2 of Conlisk (19866) should read 
32, i.e. 47.25 kg UF,/yr = 32 kg U/yr. 

kg/s for various values On figure 6 are the results corresponding to m, = 3 x 
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FIGURE 7. Separation factor and separative power as a function of feed flow rate m,; other 

parameters are as on figure 6. 

of the cut at a Mach number M = 3; for L/B,  = 10, as are the solutions shown here 
(B, = 0.25 m), this corresponds to an Ekman number E = 1.061 x lo-' with 
6 = 0.057 98. The corresponding value of q is also given. On figure 7 are the results as a 
function of feed flow rate for fixed cut, B = 0.5. Note the rapid decrease in separative 
power as the feed flow rate increases, which is consistent with the results of Conlisk 
(19863). Here a = wp/oF as in Conlisk (19863). 
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FIGURE 8. Separative power as a function of q for a = 0.8, 8 = 0.5 at ?h,+ = 3 x kg/s, M = 3 
as compared with the linear theory of Conlisk et al. (1983). 

On figure 8 are results as a function of thermal drive parameter q for mF = lo-* 
kg/s. For q < -6 in figure 8, the mixture is not enriched and the separative power 
is meaningless; a similar comment applies to other cases. Note for these cases the 
rapid rise in separative power; in figure 8 it occurs for q N -6 and corresponds to 
4 + 0  in boundary condition (43). It should be noted that the solid line in the figure 
corresponds to the case where the Ei layer is linear as considered in Conlisk et al. 
(1983). For this value of hF there is little difference between the present results and 
those of Conlisk et al. (1983). Figure 9 shows a further comparison of the linear and 
nonlinear results as a function of flow rate. Note that even a t  a flow rate of 4.5 x lop4 
kg/s, the separation factor is still close to the linear result. There is a bit more error 
in the separative power results because of the multiplication by extremely large 
numbers ; nevertheless the comparison is striking. The conclusion that must be 
reached here is that the regime S = O(Ei) is a very weak limit in terms of the mass 
transfer problem and the analytical closed-form solution for the separation factor 
given in Conlisk (1983) and Conlisk et al. (1983) may be employed with confidence far 
outside its technical range of validity. 

The reason for this appears to be connected with the fact that the integral over z 
of the vertical flux in the E; layer is the same as the integral of the flux in the two 
shear layers in the linear problem. To see this note that (Conlisk et al. 1983) 

p e q =  l - ( i - f 9 ) - + 7  apkq{ Aa ( 1-2- ;J +- ;j z, 2ua 

and consequently peqdz = 2, ( I + B  - +7 apiq) = [ peFsdz 
2 4uz 

from (3.44) of Conlisk et al. (1983). (Note that the integral of the EL 4- 1 a y er vertical flux 
over z is zero). This result suggests that  the separation factor for the present 
nonlinear regime, which is based on a vertical integral of 1 / ( p e q )  will be close to the 
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FIQURE 9. Comparison of the linear theory with the nonlinear theory for the separation factor and 
separative power; the linear results are taken from Conlisk et al. (1983). Here M = 3, 8 = 0.9, 
a = 0.5, q = -3. 

result for the linear problem (a&,/a( in (43) is small based on the numerical results). 
This fact implies that the striking change in the Ef-layer flow patterns as h is 
increased (figures 2 and 3) will have little effect on the separation factor (wo is still 
antisymmetric with respect to z = t )  and implies that the vertical flow rate in the El 
layer is the dominant influence on separation. 

5. Summary and conclusions 
In this paper solutions to the mass transfer problem for a binary gas mixture in a 

rapidly rotating centrifuge have been obtained in the parameter range for which the 
Ei Stewartson layer is nonlinear. This corresponds to feed flow rates of about 1 x 
to 1 x 10+ kg/s based on typical parameters. The nonlinear compressible Ekman 
condition has been shown to be the same as that of Bennetts & Hocking (1973) 
provided that the parameter h < 1 and the Prandtl number Pr x 1. This condition 
has been employed to compute the flow patterns within the l& layers which are 
inputs to the solution for the concentration layers that form on the vertical sidewalls ; 
particular interest has been focused on the source layer on r = a. It should be noted 
that the concentration-layer thickness is of the same width (O(Ef)) as the outer 
Stewartson layer, in contrast to the parameter range discussed in Conlisk et al. (1983) 
and in Conlisk (1986b). In this regard it should be noted that the present results do 
not deviate substantially from previous work encompassing the range b 4 6 < E-f. 
Here 6 = O(Ei) and the qualitative trends concerning the dependence of the 
separation factor and the separative power on cut, feed flow rate, thermal drive 
parameter q, and other parameters are reproduced. Quantitatively the results are 
also not much different from the previous results and this fact is important in two 
ways. First, the present results suggest that the analytical, closed-form solution for 
the separation factor (and hence separative power) may be applied with confidence 
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far outside the technical range of validity of the formula. Second, the correct 
interpretation of this fact is that the @-layer flow patterns are the crucial factor in 
designing a centrifuge for maximum separative power. 

As a practical matter, the present work indicates that the closed-form analytical 
solution for the separation factor given by Conlisk et al. (1983) gives accurate results 
from feed flow rates of about 1 x kg/s and, consequently, complicated 
numerical solutions for the separation factor are not necessary for accurate design 
calculations. 

to 1 x 

The authors are grateful to Professor Michael R. Foster for his helpful comments 
and to Professor David Walker who originally derived equation (A 2). 

Appendix A 

distribution, say T , ( r , z )  may be derived as follows. In the core region, from (2) 
The differential equation satisfied by the leading-order geostrophic temperature 

V, = $T,+P(r), (A 1) 

where P(r)  = (1/2M)(ap/ar). We now use (3) to solve for u and substitute into (5) .  
Finally V, in that equation may be eliminated using (A 1) and the result is 

az 

2 
r 

V'(uTG) - - ((u- 1) T G )  = - 2hr P(r)  + ~f E-;pe(r) (Pr - 1 + U )  W, -. (A 2) 

Note that for ef = O(Ei),  (A 2) describes a singular perturbation problem for 
T, in which the core temperature distribution is adjusted to its sidewall value in a 
layer of width O(Ei).  Thus, if we write T = A, AT + TGi in this layer, then T, -+ 0 as 
( r -a) E - f j - 0 ,  i.e., as 6 = ( r -a)  E-f+ 00 since EX 4 Ee. Consequently lim5+a = 0 
to match the geostrophic distribution. The detailed core-temperature problem is 
complicated and the solution is tedious and will not be given here. 

Appendix B 
Here the details of the discretization are described for the numerical method to 

solve the nonlinear Ei-layer equations (28) and (30) subject to the conditions (29) and 
(31). The equation (28) can be written as 

where K is a constant. 

for each of the derivatives in (28) and (30) and these are written according to 
For the mesh size A t  = h, standard central-difference approximations were used 

For (28) the finite-difference equations are thus given by 

#;+1(1 +/\Kho#f-1)+#~(2Kh~-2)+#f-1(1 - idh0#;- ' )  = 0. (B 4) 
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Here j denotes a typical location in the mesh and 0 < j < N, where N is the total 
number of mesh points, and i is the iteration number. 

This equation defines a tri-diagonal system of equations which were solved using 
the Thomas algorithm. The iteration scheme is assumed to converge when 

where el = 1 x lO-*-l x lop5. In this study the maximum number of iterations 
required was less than 20. Equation (30) was solved using the same method and the 
results for the velocity field were input into the mass transfer problem. Note that the 
flow velocities in the Ei layer do not depend explicitly on temperature in the present 
problem. 
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